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Is there a role for remote ischemic conditioning in 
preventing 5-fluorouracil-induced coronary vasospasm?

Jun Chong1,2,3, Andrew FW Ho3,4,5, Jonathan Yap6, Heerajnarain Bulluck7, Derek J 
Hausenloy2,3,8-11

Cardiac ischemia associated with chemotherapy has been linked to several anti-neoplastic agents and is 
multifactorial in etiology. Coronary artery vasospasm is one of the most commonly reported effects of 
cancer therapy that can lead to myocardial ischemia or infarction. The chemotherapy agent 5-fluorouracil 
(5-FU) or its oral pro-drug capecitabine can result in coronary vascular endothelial dysfunction causing 
coronary artery spasm, and possibly coronary thrombosis. These drugs have also been shown to be 
associated with myocardial infarction, malignant ventricular arrhythmias, heart failure, cardiogenic 
shock, and sudden death. The proposed mechanisms underlying cardiotoxicity induced by 5-FU are 
vascular endothelial damage followed by thrombus formation, ischemia secondary to coronary artery 
vasospasm, direct toxicity on myocardium, and thrombogenicity. There remains a pressing need to 
discover novel and effective therapies that can prevent or ameliorate 5-FU associated cardiotoxicity. To 
this point, promising overlap has been observed between proposed remote ischemic conditioning (RIC) 
cardioprotective mechanisms and 5FU-associated cardiotoxic cellular pathways. RIC, in which transient 
episodes of limb ischemia and reperfusion (induced by inflations and deflations of a pneumatic cuff 
placed on the upper arm or thigh), confer both cardioprotective and vasculoprotective effects, and may 
therefore prevent 5-FU coronary artery spasm/cardiotoxicity. In this review, we will be discussing the 
following potentially therapeutic aspects of RIC in ameliorating 5-FU associated cardiotoxicity: sequential 
phases of 5-FU cardiotoxicity as possible targets for dual windows of cardioprotection characteristic of 
RIC; protective effects of RIC on endothelial function and microvasculature in relation to 5-FU induced 
endothelial dysfunction/microvascular dysfunction; reduction in platelet activation by RIC in the context 
of 5-FU induced thrombogenicity; and the utility of improvement in mitochondrial function conferred by 
RIC in 5-FU induced cellular toxicity secondary to mitochondrial dysfunction.     
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Introduction
Cardiovascular disease is the leading cause of morbidity and 
mortality worldwide (Benjamin et al., 2019). The World Health 
Organization (WHO) estimates that 17 million people die 
each year of cardiovascular disease, accounting for 30% of all 
deaths (Balukumar et al., 2016). Cancer is the second leading 
cause of death globally and is associated with 9 million deaths 
each year (Leal et al., 2016). In fact, cancer has now overtaken 
cardiovascular disease as the leading cause of mortality in high-
income countries (Dagenais et al., 2019). According to the 
WHO, the incidence of cancer is expected to rise by about 70% 
over the next 20 years (WHO, 2018). Half of those diagnosed 
with cancer will survive for at least a decade, but this survival 
rate is expected to increase significantly in the future, leading to 
worsening burden of cancer-related complications experienced 
by the global population (Lucas et al., 2017,Cancer Research 
UK, 2019). Significant advances in cancer therapy have greatly 
reduced the mortality of cancer patients, with non-malignant 
comorbid conditions becoming important determinants of 
their quality of life and overall survival (Siegel et al., 2012). 
Among this heterogeneous group of comorbid conditions, 
cardiovascular diseases are a major contributor to overall 
morbidity and mortality in cancer survivors and patients with 
active cancer (Barac et al., 2015). 

Heart disease and cancer share common risk factors in an 
ageing population and are further linked through cardiotoxic 
effects of contemporary cancer treatment (Moser et al., 2006; 
Weaver et al., 2013; Ghosh et al., 2017). Many cancer patients 
have subclinical cardiovascular disease, which can be worsened 
by the pro-inflammatory and hypercoagulable states associated 
with cancer (Blann 2011; Demers et al., 2012; Ghosh et al., 
2018).  

Cardiotoxicity secondary to 5-fluorouracil/capecitabine 
Cardiac ischemia associated with chemotherapy has been 
linked to several anti-neoplastic agents and is multifactorial in 
etiology (Iliescu et al., 2016). Coronary artery vasospasm is 
one of the most commonly reported effects of cancer therapy 
that can lead to myocardial ischemia or infarction (Stewart and 
Pavlakis 2010; Nair and Steingart 2011). The chemotherapy 
agent 5-fluorouracil (5-FU) or its oral pro-drug capecitabine 
can result in coronary vascular endothelial dysfunction causing 
coronary artery spasm, and possibly coronary thrombosis, with 
a wide range of reported incidence between 1% and 68% (Pai 
2000; Van Cutsem et al., 2002). These agents are used to treat 
solid cancers, including gastrointestinal, breast, head, neck, 
and pancreatic cancers (Polk et al., 2014). These drugs have 
also been shown to be associated with myocardial infarction 
or malignant ventricular arrhythmias (Kosmas et al., 2008). 
Capecitabine is converted to 5-FU in a three-step process 
involving several enzymes (Malet-Martino and Jolimaitre 
2002). The last step is catalyzed by thymidine phosphorylase 
(Malet-Martino and Jolimaitre 2002). Many body tissues 
express thymidine phosphorylase, but this enzyme is expressed 
in higher concentrations in some carcinomas than in the 
surrounding normal tissues (Malet-Martino and Jolimaitre 
2002). Based on this theory, the concentration of 5-FU at the 
tumor site should be increased compared to the concentration 
of 5-FU in healthy tissues, resulting in fewer side-effects 
involving healthy tissue (Malet-Martino and Jolimaitre 
2002). The incidence of capecitabine-associated cardiac side-
effects is 3-35%, gathered from the few studies examining 
capecitabine cardiotoxicity (Van Cutsem et al., 2002; Ng and 
Cunningham 2005; Jensen 2006; Kosmas et al., 2008; Koca et 
al., 2011).  Case reports of cardiotoxicity after administration 
of capecitabine are similar to intravenous 5-FU treatment, with 
the predominant symptom being chest pain (Frickhofen et al., 
2002; Cardinale and Colombo 2006; Coughlin et al., 2008). 

Other less frequent adverse effects are cardiac arrhythmias, 
myocardial infarction, heart failure, cardiogenic shock, and 
sudden death (Saif and Shah 2009; Kelly et al., 2013; Polk et 
al., 2013). Chest pain onset is often abrupt during infusion of 
5-FU, but can also be delayed, presenting within the first 72 
hours after 5-FU administration ( Wacker et al., 2003; Saif and 
Shah 2009). Often, angina is accompanied by electrocardiogram 
(ECG) changes including ST-segment depression and prolonged 
repolarization abnormalities (Saif and Shah 2009).

Cardiac enzymes are infrequently elevated in patients 
experiencing angina following 5-FU (around 14% of 
cases) (Holubec et al., 2007; Saif and Shah 2009), and 
echocardiography has shown regional or global hypokinesis that 
usually returns to baseline within 48 hours of 5-FU cessation 
(Saif and Shah 2009). In these cases, significant coronary 
artery disease and acute plaque rupture is usually ruled out 
on coronary angiography, which leads to the consideration of 
coronary artery vasospasm (Cardinale and Colombo 2006; ,Lu 
et al., 2006). In a review of 377 patients with 5-FU-induced 
cardiotoxicity, cardiovascular risk factors such as smoking, 
diabetes, hypercholesterolemia, and family history of heart 
disease were found in 37% of the patients. Smoking was the 
most common risk factor among these groups of patients (Saif 
and Shah 2009). Previous or concomitant radiation therapy 
may play a role in 5-FU-induced cardiac toxicity as radiation 
can cause small-vessel thrombosis. 5-FU is a radio-sensitizer 
and may enhance radiation-induced thrombosis (Fajardo 1973; 
May et al., 1990). There is a higher incidence of angina with 
administration through continuous infusion compared to bolus 
infusion (Sudhoff et al., 2004; Saif and Shah 2009). It is unclear 
if this effect is dose-dependent, and although cessation of 5-FU 
results in resolution of angina, symptoms have been reported 
to last up to 12 hours (Tsavaris et al. 2002). Re-initiation of 
5-FU has been associated with increased incidence of angina 
with serious complications including acute coronary syndrome, 
hypotension, cardiac failure, and even death ( Sudhoff et al., 
2004; Saif and Shah 2009).

While the causative relationship is unclear, endothelin-1 
levels have been noted to be elevated in angina patients with 
5-FU infusion (Sudhoff et al., 2004). Patients with known pre-
existing history of coronary artery disease also have a higher 
incidence of angina, and are considered to have an increased 
risk of developing cardiac ischemia (Labianca et al., 1982; Giza 
et al., 2017). 

In addition to high doses of 5-FU, prior mantle radiation, 
or simultaneous administration of another cardiotoxic 
chemotherapeutic agent are factors that can contribute to 
development of cardiac ischemia in patients treated with anti-
metabolite drugs (de Forni et al., 1992,Anand 1994). In one 
large study, myocardial ischemia was reported in 4% of patients 
receiving high-dose, continuous infusion of 5-FU (Tsavaris 
et al. 2002). However, the failure of ergonovine and 5-FU 
to produce direct coronary artery vasospasm during cardiac 
catheterization has questioned the hypothesis of abnormal 
vasoreactivity being the predominant mechanism causing 
5-FU associated myocardial ischemia (Freeman and Constanza 
1988; Stewart et al., 2010). Age of the patient did not appear 
to influence the occurrence of cardiotoxicity (Labianca et al., 
1982). 

Need for novel therapies to prevent 5-FU associated 
cardiotoxicity
The proposed mechanisms underlying cardiotoxicity induced 
by 5-FU are vascular endothelial damage followed by thrombus 
formation, ischemia secondary to coronary artery vasospasm, 
direct toxicity on myocardium, and thrombogenicity. Patients 
developing ischemic events usually have recurrences if the drug 
is subsequently administered, so consideration must be given to 
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withholding future 5-FU therapy if a patient develops ischemic 
events while on the drug (Anand 1994; Akpek and Hartshorn 
1999). Although treatment with vasodilators have been 
proposed as prophylaxis against coronary artery vasospasm, 
limited effectiveness of this prophylactic therapy has been 
observed (Patel et al., 1987). Pharmacogenomic studies and 
genetic profiling may help predict the occurrence and streamline 
the treatment of 5-FU-induced coronary artery vasospasm. 
Further research is required to explore the cardioprotective 
effect of agents such as coenzyme complex, GLP-1 analogues, 
and degradation inhibitors on 5-FU-induced coronary artery 
vasospasm. 

Postulated mechanisms of 5-FU associated cardiotoxicity – 
an overview
Patients with coronary artery vasospasm may have ECG 
findings suggestive of coronary occlusion, including ST-
segment elevation as well as biochemical evidence of 
myocardial injury with troponin elevation even in the absence 
of occlusive epicardial vessel disease on coronary angiography 
or computed tomography (CT) imaging of the coronary vessels. 
In fact, patients with 5-FU-associated cardiotoxicity have 
consistently been shown to lack significant coronary stenosis 
on coronary angiography (Shoemaker et al., 2004; Alter et al., 
2006; Camaro et al., 2009; Atar et al., 2010; Tajik et al., 2010). 

The underlying mechanism of 5-FU associated cardiotoxicity 
is not well established and is likely to be multifactorial 
(Polk et al., 2014). The mechanism to explain 5-FU cardiac 
effects that is best supported by preclinical and clinical data 
is coronary artery vasospasm (de Forni et al., 1992; Akhtar 
et al., 1993; Mossseri et al., 1993; Porta et al., 1998; Sudhoff 
et al., 2004,Alter et al., 2006,Floyd et al., 2005; Dalzell and 
Samuel 2009). Preclinical models provide in vitro evidence of 
concentration-dependent vasoconstriction by 5-FU on vascular 
smooth muscle cells (Mosseri et al., 1993). Clinical data include 
the documentation of coronary artery spasm angiographically 
following intravenous (IV) 5-FU, and some cases of successful 
prophylaxis against coronary artery vasospasm with calcium 

channel antagonists (Kleiman et al., 1987; Luwaert et al., 1991; 
Shoemaker et al., 2004; Sudhoff et al., 2004).

However, some characteristics of 5-FU cardiotoxicity are 
inconsistent with this hypothesis. Coronary artery vasospasm 
has not been consistently shown angiographically during 
symptomatic attacks, and reintroduction of 5-FU in patients 
with a previous adverse cardiac event has not resulted in 
coronary spasm as evidenced by coronary angiography (Burger 
and Mannino 1987; Mizuno et al., 1995). In some patients 
with suspected 5-FU-related cardiotoxicity, ergonovine 
provocation has failed to induce coronary artery vasospasm 
(Freeman and Constanza 1988). Echocardiography has 
demonstrated a reduced ejection fraction and global akinesia of 
the left ventricular myocardium during attacks, which did not 
correspond to the segmental distribution of the major coronary 
arteries (de Forni et al., 1992). Vasodilator drugs are also not 
consistently protective (Patel et al, 1987; Oleksowicz  and 
Bruckner 1988; Eskilsson  and Albertsson 1990; Cwikiel  et al., 
1996; Akpek and Hartshorn 1999; Saif and Shah 2009).  

Therefore, other pathophysiologic mechanisms probably 
contribute, including myocarditis (Tsibiribi et al., 2006), a 
direct myocardial toxic effect secondary to the antimetabolite 
effects of the drug causing a cardiomyopathic picture (Patel 
et al., 1987; Jensen et al., 2010), or a thrombogenic effect due 
to endothelial injury (Sasson et al., 1994; Cwikiel et al., 1996; 
Kuropkat et al., 1999; Jensen et al., 2012). As 5-FU is rapidly 
cleared from the bloodstream after bolus administration with a 
half-life of 15 to 20 minutes, a direct effect of the drug seems 
unlikely to be the cause of cardiotoxicity. There is also a higher 
incidence of angina with administration through continuous 
infusion compared to bolus infusion (Sudhoff et al., 2004; Saif 
and Shah 2009). 

Of note, the metabolite of 5-FU, alpha-fluoro-beta-alanine 
(FBAL), is further catabolized into fluoroacetate, which is 
known to be highly cardiotoxic (Arellano et al., 1998; Muneoka 
et al., 2005). The lack of reported cardiac toxicity from 
fluoropyrimidines administered with the dihydropyrimidine 
dehydrogenase (DPD) enzyme inhibitors eniluracil and 

Figure 1. Potential cellular targets in 5-fluorouracil cardiotoxicity amenable to RIC cardioprotection.
*Image components courtesy of Servier Medical Art. Figure 1 (with annotations) is original work by first author with use of said image 
components. 
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gimeracil lends further support to the theory that metabolic 
pathways leading to FBAL generation may be a significant 
pathophysiologic component of cardiotoxicity (Marsh et al., 
2002; Guo et al, 2003; Yip et al., 2003).

5-FU administration can evoke a Takotsubo type of 
cardiomyopathy, a transient regional myocardial dysfunction 
that is precipitated by physical or emotional stress and thought 
to be related to exaggerated sympathetic stimulation (Stewart et 
al., 2010; Basselin  et al., 2011; Dechant et al., 2012; Grunwald 
et al., 2012). The ECGs of patients with presumed Takotsubo 
cardiomyopathy often reveal ST-segment elevation, and cardiac 
enzymes are frequently mildly elevated, with a characteristic 
pattern of left ventricular dysfunction of non-segmental 
distribution. Finally, individual sensitivity to cardiotoxicity 
might result from inherited variations in the catabolic enzyme 
pathways responsible for the metabolism of 5-FU, leading to 
variable levels of cardiotoxic degradation products.

There remains a pressing need to discover novel and 
effective therapies that can prevent or ameliorate 5-FU 
associated cardiotoxicity. In this regard, remote ischemic 
conditioning (RIC), in which transient episodes of limb 
ischemia and reperfusion (induced by inflations and deflations 
of a pneumatic cuff placed on the upper arm or thigh), confer 
both cardioprotective and vasculoprotective effects, and may 
therefore prevent 5-FU coronary artery spasm/cardiotoxicity 
(see Figure 1) (Przyklenk  et al., 1993; Chong et al., 2017; 
Chong et al., 2019). 

Potential cellular targets in 5-fluorouracil cardiotoxicity 
amenable to RIC cardioprotection
1. Two phases of 5-FU cardiotoxicity amenable to two 
windows of RIC cardioprotection 
While coronary vasoconstriction may be observed in patients 
during or immediately after 5-FU injection, clinical features 
of toxicity do not typically manifest until after the end of an 
infusion or even hours to days later (Grem 2000; Jensen et 
al., 2010, Basselin et al., 2011). 5-FU is also rapidly cleared 
from the bloodstream after bolus administration with a half-
life of 15 to 20 minutes, therefore a direct effect of the drug 
seems unlikely to be the only cause of cardiotoxicity. There is 
also a higher incidence of angina with administration through 
continuous infusion compared to bolus infusion (Sudhoff et 
al., 2004; Saif and Shah 2009). The delayed phase of 5-FU 
cardiotoxicity could be explained in part by the generation 
of toxic breakdown products of 5-FU. FBAL (a metabolite 
of 5-FU) is further catabolized into highly-cardiotoxic 
fluoroacetate. Metabolic pathways leading to FBAL generation 
may be a significant pathophysiologic component of 5-FU 
cardiotoxicity (Marsh et al., 2002; Guo et al, 2003; Yip et al., 
2003).

Gross evidence of myocarditis has been demonstrated 
in rabbits exposed to 5-FU (Becker et al., 1999) where left 
ventricular hypertrophy, myocardial necrosis, thickening of 
intramyocardial arterioles, and disseminated apoptosis in 
myocardial and endothelial cells have been demonstrated. The 
use of a high single dose of 5-FU in this study was intended 
to differentiate the acute toxic effects of 5-FU, which resulted 
in thrombogenesis and spasm due to endothelial lesions, from 
delayed cardiotoxicity after four injections at 7-day intervals, 
which lead to apoptosis of myocardial and endothelial cells 
without evidence of spasm. These results also support an 
alternative mechanism for 5-FU cardiotoxicity beyond 
vasospasm and ischemia.

The sequential phases of 5-FU cardiotoxicity lend themselves 
as potential targets to dual windows of cardioprotection 
characteristic of RIC. The protective effects of RIC on 
endothelial function do not display tachyphylaxis, suggesting 
that RIC may confer long-term cytoprotective effects against 

acute ischemia and reperfusion. It is currently thought that a 
single limb RIC stimulus confers 2 windows of protection, 
the first occurring immediately and lasting 2-3 hours, and the 
second window of preconditioning (SWOP), appearing 12-24 
hours later and lasting 2-3 days (Hausenloy and Yellon 2010). 
RIC appears to extend the window of protection to 8 days. The 
SWOP may be due to de novo synthesis of cardioprotective 
proteins, such as inducible nitric oxide synthase and cyclo-
oxygenase-2  (Hausenloy and Yellon 2010). This memory effect 
could be explained by epigenetic changes in the vasculature, 
which can extend the protective effect beyond conventional 
SWOP.

2. Endothelial and vascular smooth muscle dysfunction and 
the potential role of RIC
Immediately following the intravenous administration of 
5-FU, coronary artery vasospasm has been directly visualized 
during coronary angiography (Heistad et al., 1984; Lopez 
et al., 1989; Luwaert et al.,1991), as has brachial artery 
vasoconstriction (38,85). Arterial vasospasm can be related to 
endothelial dysfunction (an endothelial-dependent mechanism) 
or primary vascular smooth muscle dysfunction (an endothelial-
independent mechanism) (Sara et al., 2018). Endothelial 
dysfunction is the reaction of the vasculature to a range of 
insults and clinical circumstances (Reddy et al., 1994; Bonetti et 
al., 2003), and represents the initial stage of atherosclerosis. It is 
characterized by an abnormal vasodilatory response to increased 
flow/shear stress or endothelial-dependent vasodilating 
agents such as acetylcholine (Vita et al., 1990; Hasdai et al., 
1996; Suwaidi et al., 2000; Schwartz et al., 2010). In normal 
physiology, acetylcholine induces vasodilation through the 
release of nitric oxide from endothelial cells, which induces 
vascular muscle cell relaxation, and in turn vessel dilatation 
through the cyclic-guanosine monophosphate (cGMP) pathway 
(Hasdai et al., 1997). Any damage to endothelial cells disrupts 
this process and upon acetylcholine administration, paradoxical 
vasoconstriction occurs instead (Sara et al., 2018). In the 
coronary arteries, endothelial function is assessed by invasive 
pharmacologic provocation during coronary angiography with 
excessive vasoconstriction representing endothelial dysfunction 
(Hasdai et al., 1998; Pyke and Tschakovsky 2005; Dalzell and 
Samuel 2009; Schwartz et al., 2010). Endothelial-independent 
vascular smooth muscle dysfunction leads to vasoconstriction 
in the presence of a functionally intact endothelium, and can 
also be assessed with invasive pharmacologic provocation using 
nitroglycerin (Hasdai et al., 1998). 

RIC has been demonstrated to ameliorate endothelial 
dysfunction. The mechanisms responsible for these vascular 
effects are unclear but may relate to shear stress adaptations, 
augmentation of endothelium-dependent vasodilation and 
production of nitric oxide (Kimura et al., 2007), circulation 
of vasoactive mediators such as nitric oxide (Kimura et al., 
2007), and systemic antioxidant and anti-inflammatory effects. 
Kharbanda et al (2002) reported that RIC in one arm attenuated 
the endothelial dysfunction (assessed by flow-mediated 
dilatation) induced by a sustained episode of limb ischemia 
and reperfusion in the contralateral arm. Luca et al (2013) 
demonstrated improved endothelial function following acute 
ischemia and reperfusion in healthy volunteers that received 
7 days of daily RIC. In the study by Pryds et al (2017), RIC 
applied daily for 28 days in chronic ischemic heart failure 
patients was shown to improve global longitudinal strain (GLS) 
in patients with the highest NT-proBNP plasma levels and 
lowered systolic blood pressure. 

The beneficial effects of RIC on both NT-proBNP and GLS 
may relate to less myocardial wall stress, caused by reduction 
in afterload (as evidenced by lowered systemic blood pressure), 
and this may due to the release of known vasodilatory mediators 
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of RIC such as adenosine and nitric oxide (Pryds et al., 2017). 
These beneficial vasodilatory effects could be conferred on 
patients receiving 5-FU through RIC administration peri- and 
during chemotherapy. Indeed, RIC activation of pathways 
producing vasodilatory mediators such as adenosine and nitric 
oxide can potentially bypass/override the deleterious effect of 
dysfunctional endothelium in vasoconstriction by delivering 
vasodilatory mediators direct to vessel smooth muscle lining, 
facilitating cGMP-mediated muscle relaxation, and vessel 
dilatation.     

3. Dysfunctional coronary microvasculature with vasospasm 
and the potential role of RIC
Echocardiography has demonstrated global akinesia of the 
left ventricular myocardium in 5-FU associated cardiotoxicity 
not corresponding to segmental myocardial distribution of the 
major coronary arteries (de Forni et al., 1992). The discordance 
between echocardiographic and angiographic findings could 
undermine the epicardial arterial vasospasm theory in patients 
receiving 5-FU.  However, microvascular vasospasm could 
be postulated to explain global, non-segmental akinesia. 
Endothelial-dependent and endothelial-independent dysfunction 
also affects the coronary microvasculature, often in the absence 
of affecting the epicardial vessels (Kinhult et al., 2001) where it 
leads to global versus segmental ischemia. Since the coronary 
microvasculature cannot be directly visualized, its function 
is assessed through measurements of coronary blood velocity 
and flow with intravascular Doppler techniques and also with 
pharmacologic provocation at coronary angiography (Hasdai et 
al., 1998).   

Beneficial effects on vascular and endothelial function 
have been reported in the brachial artery and forearm 
microcirculation in healthy volunteers following daily RIC 
for 7 days, suggesting vascular effects of RIC which extend 
from conduit arteries to the skin microvasculature (Jones 
et al., 2014). It would be of clinical interest to explore if 
these beneficial effects can also be conferred onto coronary 
microvasculature, particularly in the case of diffuse myocardial 
ischemia induced by 5-FU administration. RIC-induced 
upregulation of vasodilatory mediators would be expected to 
enhance vascular smooth muscle relaxation and vessel dilatation 
at the microvascular level in 5-FU associated coronary arterial 
dysfunction.   Interestingly, the vascular effects induced by 
RIC were shown to still be present 8 days after the end of the 
intervention, suggesting a ‘memory’ effect (Jones et al., 2014) 
that extends beyond the usual 2-3 days observed with the 
SWOP in terms of its cardioprotective effect (Marger et al., 
1993). 

4. 5-FU induced thrombogenicity and role of RIC induced 
fibrinolysis
Damaged endothelium exposes tissue factors, initiating 
platelet aggregation that is further propagated by the release 
of von Willebrand factor and fibrin aggregation, resulting 
in thrombi. 5-FU may lead to thrombotic occlusive disease, 
and studies of rabbit endothelium exposed to 5-FU have 
shown areas of platelet aggregation and fibrin formation 
(Yudkin et al., 1999; Jensen and Sorensen 2012). Regulating 
the initiation of thrombus formation is an additional aspect 
of endothelial function and studies have characterized 
abnormal endothelial function by identifying altered levels of 
endothelium-derived markers such as von Willebrand factor 
and fibronectin (Spasojevic et al., 2005; 2008), suggesting 
a role of endothelium-associated thrombogenicity in 5-FU 
cardiotoxicity. 

Pryds et al (2017) have investigated the effect of RIC 
applied daily on platelet function in chronic ischemic heart 
failure patients. RIC was shown to have no effect on platelet 

aggregation in response to collagen or arachidonic acid in 
heart failure patients or platelet turnover, which differs from 
the effects of a single limb RIC stimulus which was reported 
to reduce platelet activation (Lanza et al., 2016; Pedersen et 
al., 2017). However, RIC did increase fibrinolysis in both heart 
failure and control patients, suggesting it may reduce the risk of 
thrombosis (Pryds et al., 2017). This effect may be of benefit in 
5-FU associated thrombogenicity. 

5. Direct myocardial cellular damage by 5-FU and the 
potential role of RIC on mitochondria 
Direct cardiomyocyte and vascular cell damage could also 
contribute to 5-FU-induced cardiotoxicity. Animal studies 
have demonstrated dose-dependent pathological changes to 
cardiomyocytes (Dickson et al., 1999) and endothelial cells 
(Lamberti et al., 2012), which could be a representation of the 
initial insult and subsequent ‘reaction to injury’ that leads to 
endothelial dysfunction in response to 5-FU. These changes are 
thought to be caused by induction of apoptosis with an absence 
of necrosis as opposed to that seen with direct cytotoxicity 
(Matsubara et al., 1980), as is the mechanism in neoplastic 
cells. Other animal models have demonstrated specific 
biochemical changes in cardiomyocytes, including increased 
oxygen consumption, depletion of high-energy phosphate 
compounds, and citrate accumulation (Tamatsu et al., 1984; 
Millart et al., 1992; Durak et al., 2000) occurring independently 
of changes in blood and oxygen supply. This is thought to be 
secondary to reduced aerobic efficiency caused by 5-FU-related 
mitochondrial uncoupling (Tamatsu et al., 1984), which in turn 
leads to hypoxic cell injury. 

Characteristics of mitochondrial dysfunction include 
changes in the mitochondrial membrane potential, a reduction 
in the adenosine triphosphate (ATP) level and the inhibition of 
mitochondrial oxygen consumption (Pieczenik and Neustadt 
2007). Excessive formation of reactive oxygen species 
(ROS) contributes to mitochondrial dysfunction (Litvinova 
et al., 2015). In particular, superoxide anion generated by the 
mitochondria, namely by complexes I and III of the electron 
transport chain (ETC), is the precursor of most ROS and a 
mediator in oxidative chain reactions (Litvinova et al., 2015). 
Dismutation of superoxide produces hydrogen peroxide, which 
in turn may be partially reduced to hydroxyl radicals, causing 
more damage to various mitochondrial and cellular components 
(Turrens 2003). Free radical damage to mitochondria may lead 
to decreased affinity of mitochondrial proteins for substrates or 
coenzymes (Liu et al., 2003). 

Previous studies have suggested an association of RIC 
with improved mitochondrial function (Kleinbongard et al., 
2018). In mitochondria of isolated perfused rat hearts after 
RIC in vivo, there was preserved mitochondrial respiration 
after ischemia/reperfusion (Ferko et al., 2014). In mitochondria 
taken from atrial tissue of patients undergoing cardiac surgery 
with RIC, there was also preserved respiration when the 
atrial tissue was obtained after aortic cross-clamping, but not 
when obtained before aortic cross-clamping (Slagsvold et al., 
2014a; 2014b). The different conditioning strategies including 
preconditioning, remote preconditioning, and postconditioning 
target mitochondria and can improve their function (Boenglet 
et al., 2018), with potential to ameliorate direct cellular toxicity 
secondary to mitochondrial dysfunction conferred by 5-FU.  

Conclusion and future directions
There remains a pressing need to discover novel and effective 
therapies that can prevent or ameliorate 5-FU associated 
cardiotoxicity. The proposed mechanisms underlying 
cardiotoxicity induced by 5-FU are multifactorial and include 
vascular endothelial damage followed by thrombus formation, 
ischemia secondary to coronary artery vasospasm, direct 
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toxicity on myocardium and thrombogenicity (Chong and 
Ghosh 2019). There is promising overlap between proposed 
RIC cardioprotective mechanisms with 5-FU-associated 
cardiotoxic cellular pathways. Therefore, further studies are 
needed to investigate the therapeutic potential of RIC for 
preventing 5-FU coronary artery spasm/cardiotoxicity.
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